
10/27/23, 5:23 PM Creating and populating a database | IBM Cloud Docs

https://cloud.ibm.com/docs/Cloudant?topic=Cloudant-creating-and-populating-a-simple-ibm-cloudant-database-on-ibm-cloud 1/11

English

This tutorial shows you how to use the Python programming language to create an IBM® Cloudant® for IBM Cloud® database in your IBM
Cloud service instance. You also learn how to populate the database with a simple collection of data.

This tutorial builds on a series of Python language instructions, suitable for the following tasks:

Creating and populating a database
Last updated 2023-04-20

Note: This tutorial doesn't use the most efficient Python code. The intent is to show simple and easy-to-understand working
code that you can learn from and apply to your own applications. You must apply normal best practices for checking and

handling all warning or error conditions that are encountered by your own applications.

Objectives

Connecting to an IBM Cloudant service instance on IBM Cloud®.1

Creating a database within the service instance.2

Storing a small collection of data as documents within the database.3

Retrieving data.4

Deleting the database.5

Closing the connection to the service instance.6

Before you begin

https://cloud.ibm.com/docs
https://www.python.org/

10/27/23, 5:23 PM Creating and populating a database | IBM Cloud Docs

https://cloud.ibm.com/docs/Cloudant?topic=Cloudant-creating-and-populating-a-simple-ibm-cloudant-database-on-ibm-cloud 2/11

This tutorial provides you with the following options:

Follow each step as outlined in this tutorial.

Or execute the Python script, and come back to Step 5. Retrieving data.

Installing Python

Tip: Normally, you don't run commands individually in Python. You usually create a script, which is a list of the commands you

want to run, stored in a Python file, with a py extension.

Set up service credential requirements.

a. Create a service instance and credentials by following the Getting started tutorial.

b. Locate your service credentials by following this tutorial.

1

Install the required version of Python.

b. Verify that you get a result similar to the following example:

2

$ python3 --version

Python 3.8.1

Verify that your Python Client Library meets the requirement.3

You must have a current version of the Python programming language that is installed on your system.

Check that Python is installed by running the following command at a prompt:

https://cloud.ibm.com/docs/Cloudant?topic=Cloudant-getting-started-with-cloudant
https://cloud.ibm.com/docs/Cloudant?topic=Cloudant-locating-your-service-credentials#locating-your-service-credentials
https://www.python.org/

10/27/23, 5:23 PM Creating and populating a database | IBM Cloud Docs

https://cloud.ibm.com/docs/Cloudant?topic=Cloudant-creating-and-populating-a-simple-ibm-cloudant-database-on-ibm-cloud 3/11

You must connect to your service instance before you create a database.

The following components are identified as normal import statements.

You can follow steps 1 - 5 to learn about the individual commands, or go to the end of the tutorial to execute the Python script. When you
finish, return to Step 5. Retrieving data.

a. Check that the client library installed successfully by running the following command at a prompt:

You get a list of all the Python modules installed on your system.

b. Inspect the list, looking for an IBM Cloudant entry similar to the following example:

Deprecated: The following examples use the deprecated python-cloudant client library.

$ pip freeze

cloudant==2.14.0

Step 1: Connecting to a service instance

Run these import statements to connect to the service instance.1

from cloudant.client import Cloudant
from cloudant.error import CloudantException
from cloudant.result import Result, ResultByKey

Find username , password , and URL in your Classic service credentials and replace serviceUsername , servicePassword , and
serviceURL in the following example.

2

10/27/23, 5:23 PM Creating and populating a database | IBM Cloud Docs

https://cloud.ibm.com/docs/Cloudant?topic=Cloudant-creating-and-populating-a-simple-ibm-cloudant-database-on-ibm-cloud 4/11

Now, your Python application can access the service instance on IBM Cloud.

Next, you create a database within the service instance, called databasedemo .

serviceUsername = "apikey-v2-58B528DF5397465BB6673E1B79482A8C"
servicePassword = "49c0c343d225623956157d94b25d574586f26d1211e8e589646b4713d5de4801"
serviceURL = "https://353466e8-47eb-45ce-b125-4a4e1b5a4f7e-bluemix.cloudant.com"

Establish a connection to the service instance.3

client = Cloudant(serviceUsername, servicePassword, url=serviceURL)
client.connect()

Or replace ACCOUNT_NAME and API_KEY with the values from your IAM API service credentials.4

client = Cloudant.iam(ACCOUNT_NAME, API_KEY, connect=True)

Step 2: Creating a database within the service instance

Create this instance by defining a variable in the Python application.1

databaseName = "databasedemo"

Create the database.2

myDatabaseDemo = client.create_database(databaseName)

Verify that the database was created successfully.3

10/27/23, 5:23 PM Creating and populating a database | IBM Cloud Docs

https://cloud.ibm.com/docs/Cloudant?topic=Cloudant-creating-and-populating-a-simple-ibm-cloudant-database-on-ibm-cloud 5/11

You want to store a small, simple collection of data in the database. This data is used in other tutorials, like Using IBM Cloudant Query to
find data.

if myDatabaseDemo.exists():
 print("'{0}' successfully created.\n".format(databaseName))

Step 3: Storing a small collection of data as documents within the database

Create sample data.1

sampleData = [
 [1, "one", "boiling", 100],
 [2, "two", "hot", 40],
 [3, "three", "hot", 75],
 [4, "four", "hot", 97],
 [5, "five", "warm", 20],
 [6, "six", "cold", 10],
 [7, "seven", "freezing", 0],
 [8, "eight", "freezing", -5]
]

Use a for statement to retrieve the fields in each row by going through each row in the array.2

for document in sampleData:
 # Retrieve the fields in each row.
 number = document[0]
 name = document[1]
 description = document[2]
 temperature = document[3]

https://cloud.ibm.com/docs/Cloudant?topic=Cloudant-creating-an-ibm-cloudant-query
https://cloud.ibm.com/docs/Cloudant?topic=Cloudant-creating-an-ibm-cloudant-query

10/27/23, 5:23 PM Creating and populating a database | IBM Cloud Docs

https://cloud.ibm.com/docs/Cloudant?topic=Cloudant-creating-and-populating-a-simple-ibm-cloudant-database-on-ibm-cloud 6/11

To perform a minimal retrieval, you first request a list of all documents within the database. This list is returned as an array. You can then
show the content of an element in the array.

Create a JSON document that represents all the data in the row.3

jsonDocument = {
 "numberField": number,
 "nameField": name,
 "descriptionField": description,
 "temperatureField": temperature
}

Create a document by using the Database API.4

newDocument = myDatabaseDemo.create_document(jsonDocument)

Check that the document exists in the database.5

if newDocument.exists():
 print("Document '{0}' successfully created.".format(number))

Step 4: Retrieving data

Retrieve a minimal amount of data.1

result_collection = Result (myDatabaseDemo.all_docs)
print("Retrieved minimal document:\n{0}\n".format(result_collection[0]))

See a result similar to the following example.2

10/27/23, 5:23 PM Creating and populating a database | IBM Cloud Docs

https://cloud.ibm.com/docs/Cloudant?topic=Cloudant-creating-and-populating-a-simple-ibm-cloudant-database-on-ibm-cloud 7/11

In a relational database, the first document that is stored in a database is always the first document that is returned in a list of results. This
notion doesn't necessarily apply to NoSQL databases, such as IBM Cloudant.

Additionally, to perform a full retrieval, you request a list of all documents within the database, and specify that the document content
must also be returned. You run a full retrieval by using the include_docs option. As before, the results are returned as an array. You can
then show the details of an element in the array by including the full content of the document this time.

[{
"id": '60e19edf809418e407fb6791a1d8fec4',
"key": '60e19edf809418e407fb6791a1d8fec4',
"value": {

"rev": '2-3d6dc27627114431c049ddecae9796e0'
}

}]

Full retrieval of a document

Request the first document that is retrieved from the database.1

result_collection = Result(myDatabaseDemo.all_docs, include_docs=True)
print("Retrieved minimal document:\n{0}\n".format(result_collection[0]))

See the result, which is similar to the following example:2

[
 {
 "value": {
 "rev": "1-b2c48b89f48f1dc172d4db3f17ff6b9a"
 },
 "id": "14746fe384c7e2f06f7295403df89187",
 "key": "14746fe384c7e2f06f7295403df89187",
 "doc": {

10/27/23, 5:23 PM Creating and populating a database | IBM Cloud Docs

https://cloud.ibm.com/docs/Cloudant?topic=Cloudant-creating-and-populating-a-simple-ibm-cloudant-database-on-ibm-cloud 8/11

You can work with the IBM Cloudant API endpoints directly, from within a Python application.

In this example code, you again request a list of all the documents, including their content. However, this time you do so by invoking the
IBM Cloudant /_all_docs endpoint.

 "temperatureField": 10,
 "descriptionField": "cold",
 "numberField": 6,
 "nameField": "six",
 "_id": "14746fe384c7e2f06f7295403df89187",
 "_rev": "1-b2c48b89f48f1dc172d4db3f17ff6b9a"
 }

Show more

Step 5: Calling an IBM Cloudant API endpoint directly

Identify the endpoint to contact and any parameters to supply with it.1

end_point = '{0}/{1}'.format(serviceURL, databaseName + "/_all_docs")
params = {'include_docs': 'true'}

Send the request to the service instance and show the results.2

response = client.r_session.get(end_point, params=params)
print("{0}\n".format(response.json()))

See the result that is similar to the following abbreviated example.3

{
"rows": [{

"value": {
"rev": "1-b2c48b89f48f1dc172d4db3f17ff6b9a"

},

https://cloud.ibm.com/apidocs/cloudant#postalldocs

10/27/23, 5:23 PM Creating and populating a database | IBM Cloud Docs

https://cloud.ibm.com/docs/Cloudant?topic=Cloudant-creating-and-populating-a-simple-ibm-cloudant-database-on-ibm-cloud 9/11

"id": "14746fe384c7e2f06f7295403df89187",
"key": "14746fe384c7e2f06f7295403df89187",
"doc": {

"temperatureField": 10,
"descriptionField": "cold",
"numberField": 6,
"nameField": "six",
"_id": "14746fe384c7e2f06f7295403df89187",
"_rev": "1-b2c48b89f48f1dc172d4db3f17ff6b9a"

}
Show more

Step 6: Deleting the database

Delete the database.1

try :
 client.delete_database(databaseName)
except CloudantException:
 print("There was a problem deleting '{0}'.\n".format(databaseName))
else:
 print("'{0}' successfully deleted.\n".format(databaseName))

Review the basic error handling that was included to illustrate how problems can be caught and addressed.2

Step 7: Closing the connection to the service instance

Disconnect the Python client application from the service instance.1

Run the disconnect command.2

client.disconnect()

10/27/23, 5:23 PM Creating and populating a database | IBM Cloud Docs

https://cloud.ibm.com/docs/Cloudant?topic=Cloudant-creating-and-populating-a-simple-ibm-cloudant-database-on-ibm-cloud 10/11

This script is the complete Python script for steps 2, 3, and 4. When you run the script, it connects to your service instance, creates the
database, stores a small set of data in the database, and creates JSON documents.

Execute the complete Python script

In the code example in the next step, replace the values for serviceUsername , servicePassword , and serviceURL with the values
from your service credentials.

For more information about where to find your credentials, see Locating your credentials.

1

Copy the following script into a text editor and name it demo.py .2

#!/usr/bin/env python

Connect to service instance by running import statements.
from cloudant.client import Cloudant
from cloudant.error import CloudantException
from cloudant.result import Result, ResultByKey

Add credentials to authenticate to the service instance.
serviceUsername = "apikey-v2-58B528DF5397465BB6673E1B79482A8C"
servicePassword = "680b037145f9dc8ef9e6a6d8b480783cbc1d1c12e71a0f4ced6b1eee30a243cd"
serviceURL = "serviceURL = "https://0c869093-c3ee-4a3f-bcec-00f01c8df8d8-
bluemix.cloudantnosqldb.appdomain.cloud""
databaseName = "databasedemo"

Define sample data. Show more

From the command line, run demo.py by typing a command similar to the following one.

Once you run the script, return to Step 5. Retrieving data to complete the tutorial.

3

python3 demo.py

https://cloud.ibm.com/docs/Cloudant?topic=Cloudant-locating-your-service-credentials#locating-your-service-credentials

10/27/23, 5:23 PM Creating and populating a database | IBM Cloud Docs

https://cloud.ibm.com/docs/Cloudant?topic=Cloudant-creating-and-populating-a-simple-ibm-cloudant-database-on-ibm-cloud 11/11

Contribute in GitHub

Open doc issue Edit topic

